NRDC Title 20 Recommendations for Electronics Products

Noah Horowitz – Pierre Delforge

NRDC

August 31, 2011

Benefits summary of NRDC recommendations for electronics

	CA Economy Annual Savings (\$M/yr)	Annual Energy Savings¹ (GWh/yr)	500 MW Power Plants Equivalent	CO2 Emissions (million tons CO2e/yr)	CA Households Annual Electricity
Personal Computers	\$120-\$310	1,000-2,500	0.3-0.9	0.5-1.2	140,000- 350,000
Servers	\$60-\$120	540-1,030	0.2-0.3	0.3-0.4	70,000- 140,000
Set Top Boxes	\$210	1,750	0.6	0.9	240,000
Game Consoles	\$70	570	0.2	0.3	80,000
Total	\$460-\$710	3,800-5,800	1.3-2.0	1.9-2.8	500,000- 800,000

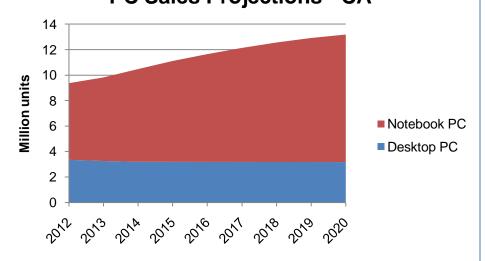
1. After stock turnover

Summary: Savings potential from Title 20 standard on electronics products

- □\$400 million to over \$0.7 billion in annual electricity costs to Californians
- ☐ The equivalent output from 1.3 to 2 large power plants (500MW)
- ☐ The annual electricity use of all the households in the cities of San Jose, San Francisco and Oakland

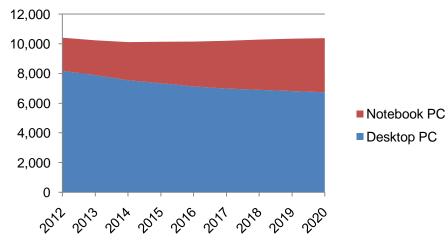
1. COMPUTERS AND SERVERS

- 2. SET TOP BOXES
- 3. GAME CONSOLES



Personal computers: desktops, note/netbooks, workstations, thin clients

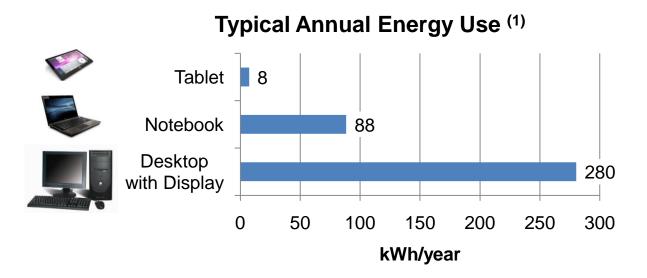
PC market growth has slowed, but still strongly positive (80% growth expected by 2020¹)


PC Sales Projections - CA

(1) NRDC estimates based on IDC 2015 projections

PC stock energy use projected to remain stable around 10 TWh² in CA through 2020 without policy intervention.

CA - PC Stock Energy Use (TWh)


(2) NRDC estimates, to be refined with Energy Star v6 data set

Comparison with tablets indicates large margin for efficiency improvements in desktops and notebooks

Based on product samples, not necessarily exact representation of market average

- Large differences in energy use reflect more than performance differences: desktops use less efficient components and system architectures
- Tablets demonstrate that computing devices of similar capabilities and prices can have radically lower power use

⁽¹⁾ iPad2, Energy Star 5 Category B desktop and notebook, 50% with Energy Star duty cycle, 50% with no power management, desktop includes 20-inch monitor, notebook includes monitor energy

Largest energy savings opportunities in computers

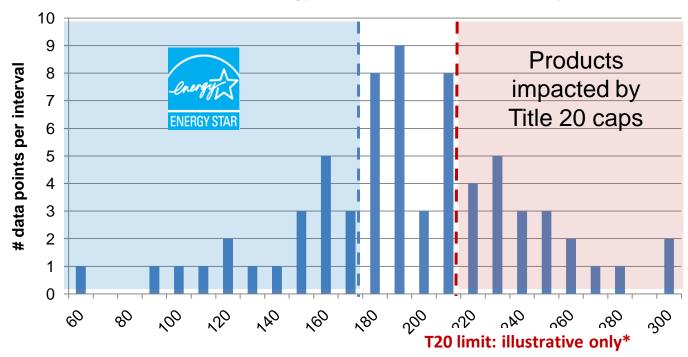
Component	Share of	Savings opportunities		
Power Supply	energy use	• 80-Plus Bronze: <70% to 82% efficiency		
Display	15-30%	• LED backlighting, more efficient panel technology		
Motherboard	15-20%	 More efficient chipsets, voltage regulators and other components, mobile-on-desktop design 		
GPU	0-50%	Higher power proportionality: low power in idle		
CPU	5-15%	 Low power CPUs, voltage and frequency scaling 		
Disks	5-10%	"Green" drives, solid state drives (SSD)		
Memory	5-10%	• "Green" memory		
Networking	2-8%			
System-level strategies				
Advanced power management Graphics switching				

Straw man standard proposal

Key elements in standard should include:

- ☐ Internal power supplies: minimum efficiency requirement
- ☐ Power limits in Idle, Sleep, Off, Networked Standby modes (within duty-cycle formula or individual modal caps)
- Power management enabled by default from factory
- Consumer label: lifetime operating cost and energy use

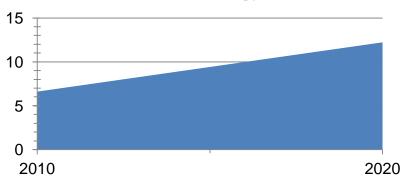
Note: Not recommending cap on active mode, only on idle and low-power modes when PC is providing no processing-intensive function to user.



Power limits: targeting the worst energy performers

Desktop Cat B (Energy Star 5 dataset, 2008, kWh/yr)

- System-level caps will require the worst energy performers in market to meet minimum efficiency standards
- Functionality and performance-neutral through category-based caps and capability adjustments

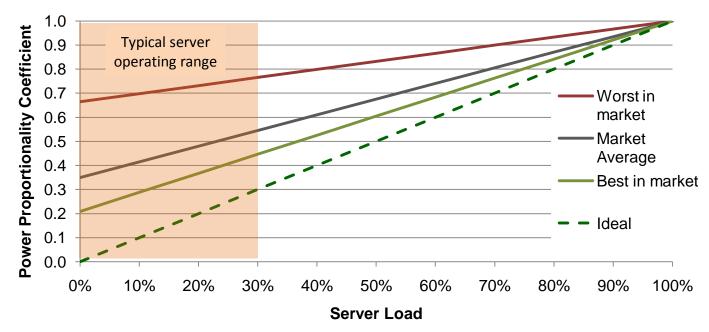

California server sales, 2010¹

Volume	Mid-range	High-End
Servers	Servers	Servers
320,400	5,640	550

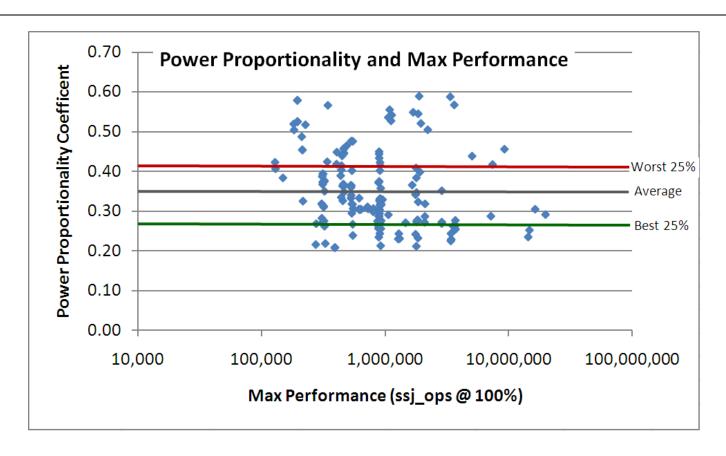
(1) IDC 2011, extrapolated per CA/US population ratio

Server energy use projected to grow 85% by 2020, due to data explosion trend²:

CA Server Stock Energy Use (TWh)


(2) Koomey 2011 extrapolated per 2005-2010 growth rate. Includes cooling associated with servers.

Poor server power proportionality responsible for large energy waste in CA server rooms



 Servers are selected for their peak capacity, but spend majority of time and energy in 0-30% load range, where much energy is wasted due to poor power proportionality

Minimum power proportionality standard

 Possible standard approach: eliminate servers with worst power proportionality from market (within appropriate workload and reliability categories)

Main opportunities to save energy in servers:

- Power supplies: eliminate the most inefficient power supplies from the market
- Efficient motherboards: voltage regulator modules (VRMs) and other components
- ☐ Efficient disks (eg. SSD, "green drives"...)
- ☐ Efficient memory ("green DDR3")
- ☐ High efficiency server layouts and fans
- New server architectures such as Intel Atom and ARM-based servers

Straw man standard proposal

Key elements in standard should include:

- ☐ Power supply efficiency requirements
- □ Power proportionality requirements (min/max power ratio), within workload and reliability categories
 OR
- ☐ Power caps in idle, per Energy Star for Servers v1OR
- Adaptation of Energy Star for Servers v2 (under development) for mandatory standard

Computers and servers savings estimates

	Computers	Servers
Cost savings CA economy* (\$ million/year)	\$120-\$310	\$60-\$120
Lifetime unit electricity cost savings	\$15-\$150	\$200-\$700
Energy savings (GWh/year)	1,000-2,500	540-1,030
Power generation avoided (MW)	170-430	90-180
CO2 emissions avoided (Thousand Tons CO2e)	500-1,250	270-380
CA Households electricity use (thousands)	140-350	70-140

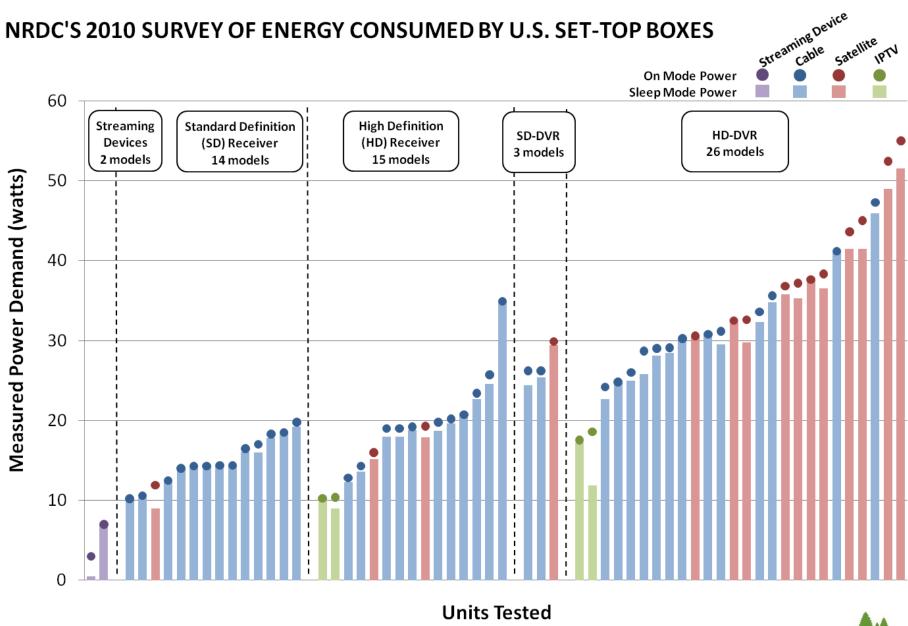
^(*) After stock turnover

1. COMPUTERS AND SERVERS

2. SET TOP BOXES

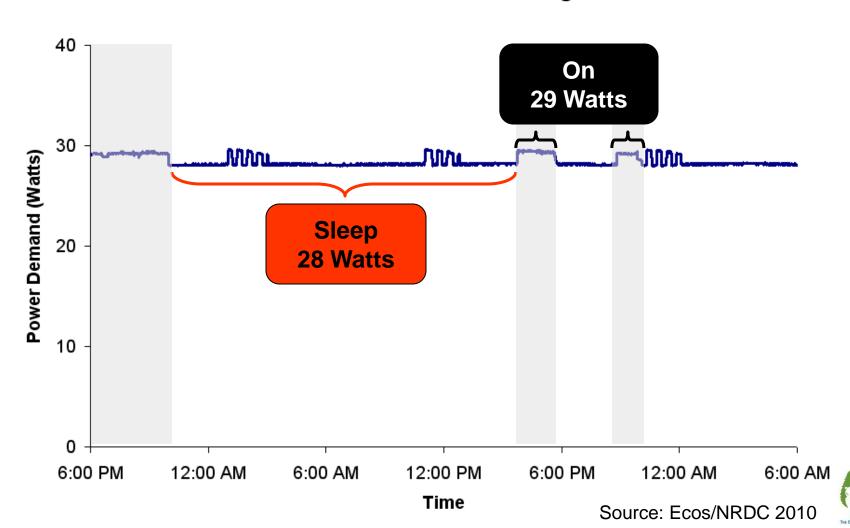
3. GAME CONSOLES

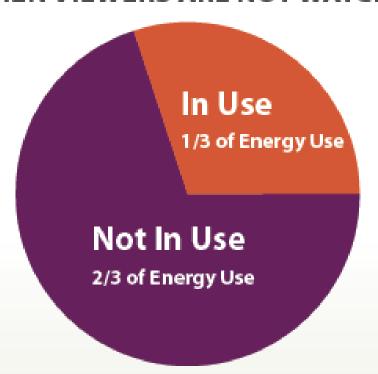

The Landscape – around 17 million STBs installed statewide


Service Providers:

- Cable: 6.8 M subscribers
 - Comcast and Time Warner dominate
- Satellite: 3.8 M subscribers
 - DirecTV and Dish Networks
- Telecom: 0.5 M subscribers

Hardware Manufacturers:


 Approximately 8 box manufacturers, all of which have ENERGY STAR qualifying models. Biggest suppliers include Motorola, Cisco and Pace.



Data Logging Example

Motorola DCX3400 with Comcast Digital Cable

NEARLY TWO-THIRDS OF ANNUAL U.S. STB ENERGY USE OCCURS WHEN VIEWERS ARE NOT WATCHING OR RECORDING CONTENT

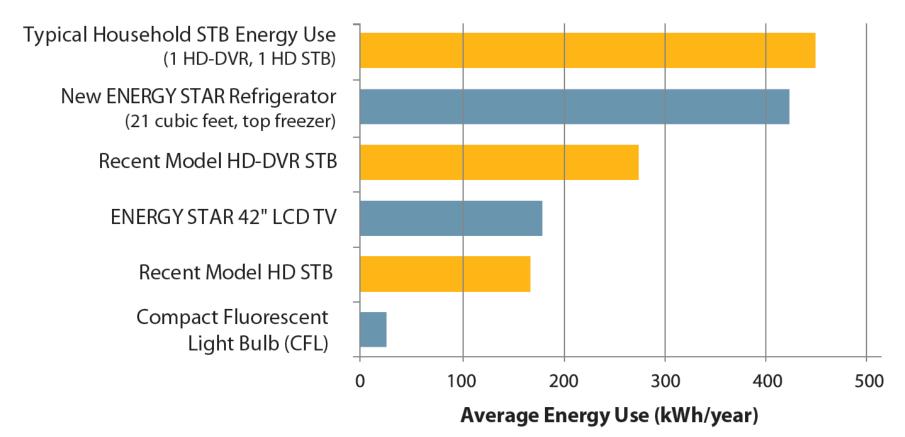
Results In...

3 Power Plants (500 MW each)
5 Million Metric Tons CO₂/year
\$1 Billion/year

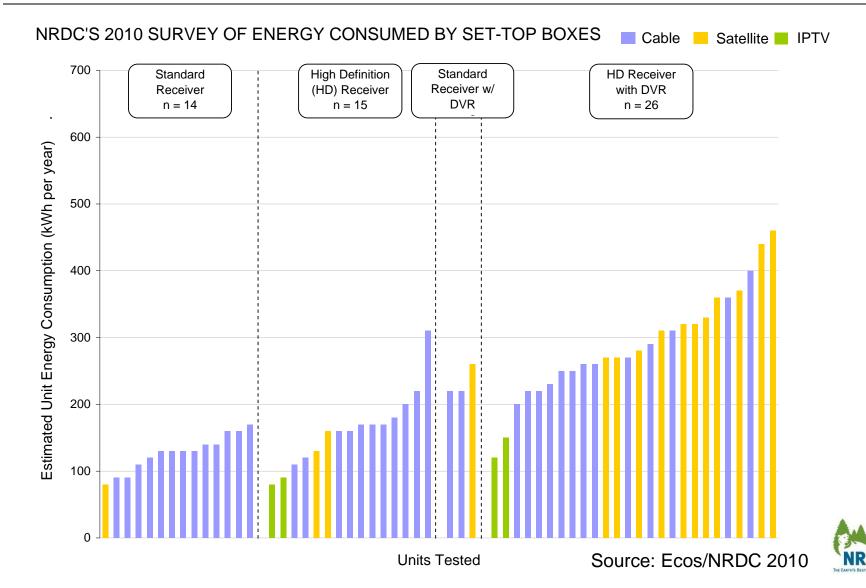
Results In...

6 Power Plants (500 MW each)
11 Million Metric Tons CO₂/year
\$2 Billion/year

In Use = watching or recording a show Not In Use = not watching or recording a show


Key Findings/Observations from NRDC-Ecos Study

- Little to no difference in power use when "turned off"
- Category energy use increasing due to growth of DVRs
- Some DVRs consume more electricity per year than new big screen TV they are connected to
- For homes with DVR and basic box, annual STB energy consumption > new ESTAR refrigerator


Energy Use of STBs and Other Appliances

ENERGY USE OF STBS AND OTHER APPLIANCES

2010 Study Results for All Service Providers

Observations/Recommendations

- Better designed STB systems could yield annual energy savings of 50 to 75%.
 Requires cooperation between STB maker AND the service provider.
- Title 20 Options
 - a) Establish annual KWh/yr limits (TEC) for various types of STBs. Consider ESTAR 3.0
 - b) Establish modal limits –

 Example: New boxes shall not be capable of drawing more than 5 watts when turned off/sleep. Also require boxes to auto power down after extended periods of no user input

Back of the envelope benefits

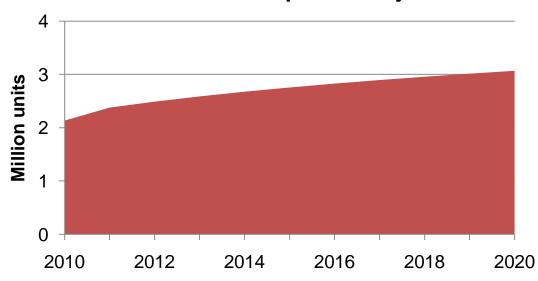
- If DVR uses 5 W instead of 35 W in standby → annual savings of 175 kWh/yr. These massive savings achieved without any restrictions for On Mode power use!
- Savings for 3 million DVRs and 14 million HD STBs, upon stock turnover:

Cost savings CA economy* (\$ million/year)	\$210
Energy savings (GWh/year)	1,750
Power generation avoided (MW)	300
CO2 emissions avoided (Thousand Tons CO2e)	870
CA Households electricity use (Thousands)	240

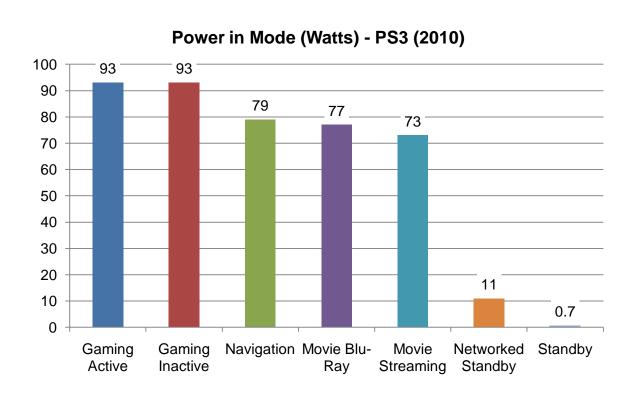
Lifetime savings in electricity costs of \$45-\$90 per device

1. COMPUTERS AND SERVERS

- 2. SET TOP BOXES
- 3. GAME CONSOLES

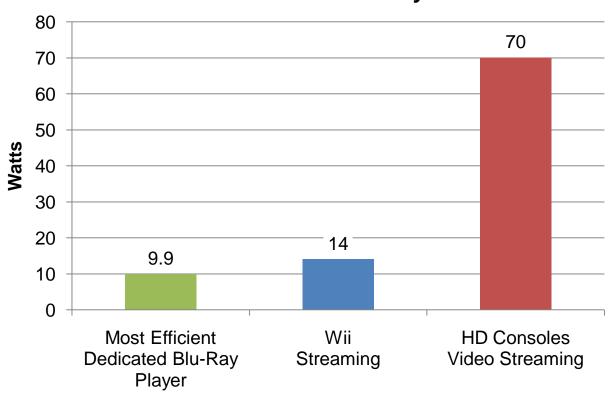


CA Game Console Shipment Projections*


- •10 million game consoles sold in CA 2005-2010, annual CA sales could reach 3 million by 2020
- Console energy use projected to reach 1.5 TWh/yr by 2020

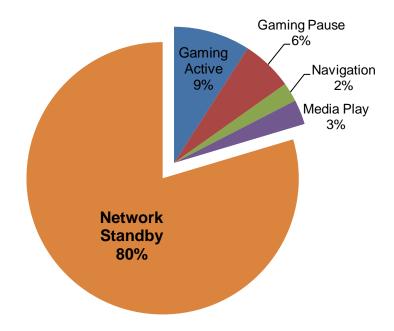
(*) Extrapolation from 2005-2010 sales

Consoles use nearly as much energy in Game Inactive, Navigation or Movie modes as actively playing games


- Auto-power down is critical to ensure consoles go into low-power modes when not being used
- With better power scalability, consoles should use much less energy in Inactive, Navigation and Movie Play modes than in Active Gaming.

Some consoles use far more energy than the most efficient standalone devices to play movies

Media Playback Power Use: Video Consoles vs. Best Standalone Player


 With increasing use of consoles to play movies (both diskbased and streaming), efficiency of console playback is becoming more critical

Beware of Network Standby! When activated, it can be responsible for 80% of console energy use

Annual Energy Use - Wii with WiiConnect24(1)

- When activated, Nintendo Wii goes into Network Standby at 10W, rather than Off at 1W. This translates into 74 kWh of annual energy use when NOT using the console
- Better efficiency in networked standby mode is critical to game console energy savings

Video game consoles energy savings opportunities

Major opportunities to save energy in game consoles:

- ☐ Put console in low-power mode when not in use
- ☐ More efficient components: CPU, GPU, RAM, disk...
- More power scalable components that only use as much power as needed in each mode
- ☐ Synchronization with TV so that TV switches off when game console powers down

Straw man standard proposal

Key elements in standard should include:

- Auto-Power Down enabled by default
- Mandatory testing and reporting of energy use in all significant modes per consensus test method
- □ Power caps in Media Playback, Navigation, Networked Standby modes

Note: Not recommending cap on active gaming mode, test and report only.

Cost savings CA economy* (\$ million/year)	\$70
Energy savings (GWh/year)	570
Power generation avoided (MW)	90
CO2 emissions avoided (Thousand Tons CO2e)	280
CA Households electricity use (Thousand)	80

Users that never power off their consoles could save over \$200 in electricity costs over life of device.

